382 research outputs found

    Proton Decay from Excited States in Spherical Nuclei

    Get PDF
    Based on a single particle model which describes the time evolution of the wave function during tunneling across a one dimensional potential barrier we study the proton decay of 208^{208}Pb from excited states with non-vanishing angular momentum ℓ\ell. Several quantities of interest in this process like the decay rate λ\lambda, the period of oscillation ToscT_{osc}, the transient time ttrt_{tr}, the tunneling time ttunt_{tun} and the average value of the proton packet position rav r_{av} are computed and compared with the WKB results.Comment: 12 pages, 4 figure

    Emission of Scission Neutrons in the Sudden Approximation

    Get PDF
    At a certain finite neck radius during the descent of a fissioning nucleus from the saddle to the scission point, the attractive nuclear forces can no more withstand the repulsive Coulomb forces producing the neck rupture and the sudden absorption of the neck stubs by the fragments. At that moment, the neutrons, although still characterized by their pre-scission wave functions, find themselves in the newly created potential of their interaction with the separated fragments. Their wave functions become wave packets with components in the continuum. The probability to populate such states gives evidently the emission probability of neutrons at scission. In this way, we have studied scission neutrons for the fissioning nucleus 236^{236}U, using two-dimensional realistic nuclear shapes. Both the emission probability and the distribution of the emission points relative to the fission fragments strongly depend on the quantum numbers of the pre-scission state from which the neutron is emitted. In particular it was found that states with Ωπ\Omega \pi = 1/2+ dominate the emission. Depending on the assumed pre- and post-scission configurations and on the emission-barrier height, 30 to 50% of the total scission neutrons are emitted from 1/2+ states. Their emission points are concentrated in the region between the newly separated fragments. The upper limit for the total number of neutrons per scission event is predicted to lie between 0.16 and 1.73 (depending on the computational assumptions).Comment: 31 pages, 16 figures, 2 table

    Gamow-Teller sum rule in relativistic nuclear models

    Full text link
    Relativistic corrections are investigated to the Gamow-Teller(GT) sum rule with respect to the difference between the ÎČ−\beta_- and ÎČ+\beta_+ transition strengths in nuclei. Since the sum rule requires the complete set of the nuclear states, the relativistic corrections come from the anti-nucleon degrees of freedom. In the relativistic mean field approximation, the total GT strengths carried by the nucleon sector is quenched by about 12% in nuclear matter, while by about 8% in finite nuclei, compared to the sum rule value. The coupling between the particle-hole states with the nucleon-antinucleon states is also discussed with the relativistic random phase approximation, where the divergence of the response function is renormalized with use of the counter terms in the Lagrangian. It is shown that the approximation to neglect the divergence, like the no-sea approximation extensively used so far, is unphysical, from the sum-rule point of view.Comment: 12 pages, Brief review for Mod. Phys. Lett. A, using ws-mpla.cl

    Model independent study of the Dirac structure of the nucleon-nucleon interaction

    Full text link
    Relativistic and non-relativistic modern nucleon-nucleon potentials are mapped on a relativistic operator basis using projection techniques. This allows to compare the various potentials at the level of covariant amplitudes were a remarkable agreement is found. In nuclear matter large scalar and vector mean fields of several hundred MeV magnitude are generated at tree level. This is found to be a model independent feature of the nucleon-nucleon interaction.Comment: 5 pages, 2 figures, results for V_lowk added, to appear in PR

    Associated hyperon-kaon production via neutrino-nucleus scattering

    Full text link
    We present the investigation of the neutrino-induced strangeness associated production on nuclei in the relativistic plane wave impulse approximation (RPWIA) framework at the intermediate neutrino energies. In this study, the elementary hadronic weak amplitudes are embedded inside the nuclear medium for the description of the exclusive channels of neutrino-nucleus interactions. These amplitudes are extracted using a model-dependent evaluation of the hadronic vertex using the Born term approximation in which the application of the Cabibbo V-A theory and SU(3) symmetry are assumed to be valid. The nuclear effects are included via the bound state wavefunctions of the nucleon obtained from the relativistic mean field (RMF) models. Two kinematics settings are used to examine various distributions of the differential cross section in the rest frame of the target nuclei. The numerical results are obtained for the neutrino-induced charged-current (CC) \,K+Λ\rm K^{^+}\Lambda-production on bound neutrons in 1s1/21s^{1/2} and 1p3/21p^{3/2} orbitals of 12^{12}C. The angular distributions are forward peaked under both kinematic settings, whereas under the quasifree setting the cross sections tend mimic the missing momentum distribution of the bound nucleon inside the nucleus.Comment: This article is submitted to International Journal of Modern Physics E (nuclear physics) and accepted on 31 October 20l

    Characteristics of light charged particle emission in the ternary fission of 250Cf and 252Cf at different excitation energies

    Get PDF
    The emission probabilities and the energy distributions of tritons, α and ^6He particles emitted in the spontaneous ternary fission (zero excitation energy) of ^250Cf and ^252Cf and in the cold neutron induced fission (excitation energy ≈ 6.5 MeV) of ^249Cf and 251Cf are determined. The particle identification was done with suited ΔE-E telescope detectors, at the IRMM (Geel, Belgium) for the spontaneous fission and at the ILL (Grenoble, France) for the neutron induced fission measurements. Hence particle emission characteristics of the fissioning systems ^250Cf and ^252Cf are obtained at zero and at about 6.5 MeV excitation energies. While the triton emission probability is hardly influenced by the excitation energy, the ^4He and ^6He emission probability in spontaneous fission is higher than for neutron induced fission. This can be explained by the strong influence of the cluster preformation probability on the ternary particle emission probability

    The relativistic self-energy in nuclear dynamics

    Get PDF
    It is a well known fact that Dirac phenomenology of nuclear forces predicts the existence of large scalar and vector mean fields in matter. To analyse the relativistic self-energy in a model independent way, modern high precision nucleon-nucleon (NNNN) potentials are mapped on a relativistic operator basis using projection techniques. This allows to compare the various potentials at the level of covariant amplitudes were a remarkable agreement is found. It allows further to calculate the relativistic self-energy in nuclear matter in Hartree-Fock approximation. Independent of the choice of the nucleon-nucleon interaction large scalar and vector mean fields of several hundred MeV magnitude are generated at tree level. In the framework of chiral EFT these fields are dominantly generated by contact terms which occur at next-to-leading order in the chiral expansion. Consistent with Dirac phenomenology the corresponding low energy constants which generate the large fields are closely connected to the spin-orbit interaction in NNNN scattering. The connection to QCD sum rules is discussed as well.Comment: 49 pages, 13 figure

    Point-Coupling Models from Mesonic Hypermassive Limit and Mean-Field Approaches

    Get PDF
    In this work we show how nonlinear point-coupling models, described by a Lagrangian density that presents only terms up to fourth order in the fermion condensate (ψˉψ)(\bar{\psi}\psi), are derived from a modified meson-exchange nonlinear Walecka model. The derivation can be done through two distinct methods, namely, the hypermassive meson limit within a functional integral approach, and the mean-field approximation in which equations of state at zero temperature of the nonlinear point-coupling models are directly obtained.Comment: 18 pages. Accepted for publication in Braz. J. Phy

    Energy distributions and yields of 3H, 4He and 6He-particles emitted in the 245Cm(n_th,f) reaction

    Get PDF
    The energy distributions and yields of light charged particles emitted during thermal neutron induced fission of 245Cm have been measured at the high flux reactor of the Institute Laue Langevin in Grenoble (France). The detection of the ternary particles was done using a Delta-E/E telescope, permitting a good separation of the ternary particles. In this way, the characteristics of the energy distribution (average energy and full width at half maximum) for 4He, 3H and 6He particles as well as their emission probabilities could be determined. For the emission probabilities per fission, the following values were obtained: LRA/B=(2.15+-0.05)E-3, 3H/B=(1.85+-0.10)E-4 and 6He/B=(4.95+-1.25)E-5

    Bound states of bosons and fermions in a mixed vector-scalar coupling with unequal shapes for the potentials

    Full text link
    The Klein-Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, Vv+Vs=constantV_{v}+V_{s}= \mathrm{constant}. These intrinsically relativistic and isospectral problems are solved in a case of squared hyperbolic potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfuntions are discussed in some detail and the effective Compton wavelength is revealed to be an important physical quantity. It is revealed that a boson is better localized than a fermion when they have the same mass and are subjected to the same potentials.Comment: 3 figure
    • 

    corecore